Distinct dimensions for attractors of iterated function systems

Amlan Banaji¹

Uni. of Jyväskylä, Finland

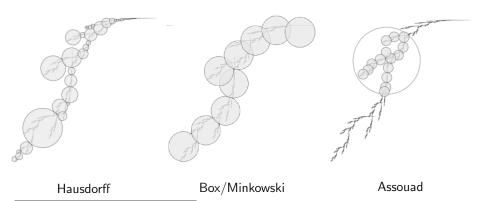
¹Based on joint work with Simon Baker, De-Jun Feng, Chun-Kit Lai, Ying Xiong https://arxiv.org/abs/2509.22084 and Alex Rutar, https://arxiv.org/abs/2406.12821 Except where otherwise noted, content on these slides "Distinct dimensions for attractors of iterated function systems" is © 2025 Amlan Banaii and is licensed under a Creative Commons Attribution 4.0 International license

Dynamics and geometry

Motivating question

What can properties of a dynamical system tell us about the geometry of invariant sets?

Geometry: coincidence/disparity of fractal dimensions.²



Fractal dimensions

Sets $F \subset \mathbb{R}^n$ will be non-empty, bounded.

• Hausdorff dimension:

$$\dim_{\mathrm{H}} E = \inf\{s \geq 0 : \forall \varepsilon > 0 \exists \text{ countable cover } \{U_1, U_2, \ldots\} \text{ of } E$$

s.t. $\sum_i (\operatorname{diam}(U_i))^s \leq \varepsilon\}.$

Lower / upper box dimensions:

$$\underline{\dim}_{\mathsf{B}} F = \liminf_{r \to 0} \frac{\log N_r(F)}{\log (1/r)}, \qquad \overline{\dim}_{\mathsf{B}} F = \limsup_{r \to 0} \frac{\log N_r(F)}{\log (1/r)},$$

where $N_r(F)$ is the least number of balls of radius r to cover F.

Assouad dimension:

$$\dim_{A} F = \inf\{s > 0 : \exists C > 0 \text{ s.t. } \forall 0 < r < R < 1, \forall x \in F,$$
$$N_{r}(F \cap B(x, R)) \leq C \left(\frac{R}{r}\right)^{s}\}.$$

Relations between dimensions

Always

$$\dim_{\mathrm{H}} F \leq \underline{\dim}_{\mathrm{B}} F \leq \overline{\dim}_{\mathrm{B}} F \leq \dim_{\mathrm{A}} F.$$

 \bullet If $E=\left\{\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\dots\right\}$ then

$$\dim_{\mathrm{H}} E = 0 < \frac{1}{2} = \underline{\dim}_{\mathrm{B}} E = \overline{\dim}_{\mathrm{B}} E < 1 = \dim_{\mathrm{A}} E.$$

• If F is those numbers in [0,1] such that for all n, all decimal digits between position 2^{2n} and $(2^{2n+1}-1)$ are 0, then

$$\dim_{\mathrm{H}} F = \underline{\dim}_{\mathrm{B}} F < \overline{\dim}_{\mathrm{B}} F < \dim_{\mathrm{A}} F.$$

Iterated function systems (IFSs)

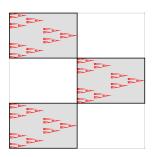
- An IFS is a finite set of contractions $\{S_i: X \to X\}_{i \in I}$ (meaning ρ -Lipschitz maps for $\rho < 1$), where $X \subset \mathbb{R}^n$ is compact.
- Hutchinson (1981): there is a unique non-empty compact attractor/limit set satisfying

$$F = \bigcup_{i \in I} S_i(F).$$

Thm (Falconer (1989), Feng-Hu (2009))

If all contractions are similarities or C^1 conformal maps (overlaps allowed) then $\dim_{\mathrm{H}} F = \underline{\dim}_{\mathrm{B}} F = \overline{\dim}_{\mathrm{B}} F$.

Bedford-McMullen carpets



Thm (Bedford (1984), McMullen (1984), MacKay (2011))

If F is a Bedford–McMullen carpet without uniform fibres then

$$\dim_{\mathrm{H}} F < \underline{\dim}_{\mathrm{B}} F = \overline{\dim}_{\mathrm{B}} F < \dim_{\mathrm{A}} F.$$

Attractors with distinct dimensions

Question

- **1** Does the box dimension of the attractor of an IFS on \mathbb{R}^d always exist?
- ② Do the Hausdorff and (lower) box dimension of the attractor of an IFS on $\mathbb R$ always coincide?

Thm (Baker–B.–Feng–Lai–Xiong (2025+))

The answer is **no** for both Question 1 and Question 2.

Indeed, there is an IFS of two separated bi-Lipschitz maps on $\mathbb R$ such that the attractor F satisfies

$$\dim_{\mathrm{H}} F < \underline{\dim}_{\mathrm{B}} F < \overline{\dim}_{\mathrm{B}} F < \dim_{\mathrm{A}} F.$$

Proof idea

- For every Cantor set $F \subset [0,1]$ containing $\{0,1\}$, $F = S_0(F) \cup S_1(F)$.
- The S_i are bi-Lipschitz contractions iff

$$0<\inf_{\omega\in\{0,1\}^*}\min\bigg\{\frac{|I_{i\omega}|}{|I_{\omega}|},\frac{|G_{i\omega}|}{|G_{\omega}|}\bigg\}\leq \sup_{\omega\in\{0,1\}^*}\max\bigg\{\frac{|I_{i\omega}|}{|I_{\omega}|},\frac{|G_{i\omega}|}{|G_{\omega}|}\bigg\}<1.$$

- Symmetric Cantor can give $\underline{\dim}_{B} F < \overline{\dim}_{B} F$.
- Asymmetric Cantor set: let $b_0 = 1$, $b_1 = 2$,

$$a_{\omega} = rac{b_{\omega_1} \cdots b_{\omega_{\lfloor n/2 \rfloor}}}{\sqrt{b_{\omega_1} \cdots b_{\omega_n}}} \cdot (100)^{-n}.$$

Separate strings of length $\approx r$ by frequency (p, q) of 1s in 1st/2nd half of coding, and use a lemma of McMullen:

$$\dim_{\mathrm{H}} F = \frac{\log 2}{\log 100} < \underline{\dim}_{\mathrm{B}} F.$$

'Perturb' by switching between $(100)^{-1}$ and $(101)^{-1}$ to separate upper and lower box dim.

Further questions

Open questions

- **1** Is $\dim_{\mathrm{H}} F < \underline{\dim}_{\mathrm{B}} F$ or $\underline{\dim}_{\mathrm{B}} F < \overline{\dim}_{\mathrm{B}} F$ possible if the IFS maps are differentiable?
- 2 Does the box dimension of every self-affine set exist?
- $\ensuremath{\mathfrak{g}}$ Is there a self-similar set in $\ensuremath{\mathbb{R}}$ with positive Lebesgue measure but empty interior?

We construct a bi-Lipschitz IFS attractor on $\mathbb R$ with positive Lebesgue measure but empty interior.

Infinite conformal IFS (Mauldin-Urbański, 1996)

A conformal iterated function system is a countable family of uniformly contracting, $C^{1+\alpha}$ conformal maps $\{S_i: X \to X\}_{i \in I}$ on a 'nice' (e.g. non-empty convex compact) set $X \subset \mathbb{R}^d$. We always assume:

- Open set condition: $Int(X) \neq \emptyset$ and $\bigcup_{i \in I} S_i(Int(X)) \subseteq Int(X)$ with the union disjoint.
- Bounded distortion

The **limit set** is the largest set $F \subseteq X$ (possibly non-compact) satisfying

$$F = \bigcup_{i \in I} S_i(F)$$

Hausdorff and box dimensions

For $w \in I^k$ let R_w be the smallest possible Lipschitz constant for $S_w := S_{w_1} \circ \cdots \circ S_{w_k}$ and define the **pressure function**

$$Pres(t) := \lim_{k \to \infty} \frac{1}{k} \log \sum_{w \in I^k} R_w^t,$$

Theorem (Mauldin-Urbański, 1996, 1999)

- $\dim_{\mathrm{H}} F = h := \inf\{t > 0 : Pres(t) < 0\}$
- $\overline{\dim}_{\mathrm{B}}F = \max\{\dim_{\mathrm{H}}F, \overline{\dim}_{\mathrm{B}}P\}$, where F is obtained by choosing exactly one point from each $S_i(X)$.

Bounds for lower box dimension

Bounds for $\underline{\dim}_B F$ that are immediate from Mauldin–Urbański:

$$\max\{\dim_{\mathrm{H}}F,\underline{\dim}_{\mathrm{B}}P\}\leq\underline{\dim}_{\mathrm{B}}F\leq\overline{\dim}_{\mathrm{B}}F=\max\{\dim_{\mathrm{H}}F,\overline{\dim}_{\mathrm{B}}P\}.$$

Theorem (B.–Rutar, 2024+)

The box dimension of F exists if and only if these bounds coincide.

In fact $\underline{\dim}_B F$ is **not** a function of $\dim_H F$, $\underline{\dim}_B P$, $\overline{\dim}_B P$:

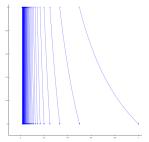
Theorem (B.–Rutar)

The trivial lower bound for $\underline{\dim}_{\mathsf{B}} F$ is sharp, and a sharp upper bound is

$$\underline{\dim}_{\mathsf{B}} F \leq \dim_{\mathsf{H}} F + \frac{(\overline{\dim}_{\mathsf{B}} P - \dim_{\mathsf{H}} F)(d - \dim_{\mathsf{H}} F)\underline{\dim}_{\mathsf{B}} P}{d\,\overline{\dim}_{\mathsf{B}} P - \dim_{\mathsf{H}} F\,\underline{\dim}_{\mathsf{B}} P}.$$

Example: continued fraction sets

- Sets F_I with continued fraction entries restricted to $I \subset \mathbb{N}$ are limit sets for CIFS $\{x \mapsto (b+x)^{-1} : b \in I\}$. Can take $P = \{1/b : b \in I\}$.
- They satisfy $\mathcal{G}(F_I) = F_I$ where the Gauss map $\mathcal{G}: [0,1) \to [0,1)$ is $\mathcal{G}(x) = \{1/x\}$ and $\mathcal{G}(0) = 0$ (here $\{\cdot\}$ denotes fractional part).³



Thm (B.-Rutar, building on Mauldin-Urbański and B.-Fraser)

There exists $I \subset \mathbb{N}$ with $\dim_{\mathbb{H}} F_I < \dim_{\mathbb{R}} F_I < \dim_{\mathbb{R}} F_I < \dim_{\mathbb{R}} F_I$.

Amlan Banaji (Uni. of Jyväskylä, Finland)

³Picture by Adam majewski, CC BY-SA 4.0

Asymptotic formula

Can derive formula for <u>dim</u>_B F in terms of function

$$r \mapsto s_P(r) := \frac{\log N_r(P)}{\log(1/r)}.$$

•

$$egin{aligned} \Psi(r, heta) &\coloneqq (1- heta) \dim_{\mathrm{H}} F + heta s_P(r^ heta), \ \psi(r) &\coloneqq \sup_{ heta \in (0,1]} \Psi(r, heta). \end{aligned}$$

• Write $f(r) \simeq g(r)$ if $f(r) - g(r) \to 0$ as $r \to 0$.

Theorem (B.-Rutar)

If F is the limit set of a CIFS and P is as above then

$$\frac{\log N_r(F)}{\log(1/r)} \asymp \psi(r), \quad \text{hence} \quad \underline{\dim}_{\mathsf{B}} F = \liminf_{r \to 0} \psi(r).$$

• The formula can depend on $\dim_H F$, even when $\dim_H F < \underline{\dim}_B P$. It only depends on the contraction ratios via $\dim_H F$.

Proof sketch

- For simplicity assume contractions are similarities and ignore subexponential terms in r.
- Upper bound:

$$N_r(F) \lesssim \sum_{\substack{\omega \in I^* \\ r_\omega > r}} N_{r/r_\omega}(P) \lesssim \sum_{\substack{\omega \in I^* \\ r_\omega > r}} r_\omega^h r^{-\Psi(r,\theta_\omega)} \lesssim r^{-\psi(r)},$$

where θ_{ω} is such that $r^{\theta_{\omega}} = r/r_{\omega}$.

• Lower bound: extract finite subsystem $\mathcal{F} \subset I$ with dim_H approximating dim_H F. Fix $\theta \in (0,1)$, let $0 < r \ll 1$.

$$\#\{\omega\in\mathcal{F}^*:r_\omega\approx r^{1-\theta}\}\approx (r^{1-\theta})^{-\dim_{\mathrm{H}}F}.$$

Each such ω contributes $\approx N_{r^{\theta}}(P) \approx (r^{\theta})^{-s_{P}(r^{\theta})}$ to $N_{r}(F)$. So $N_{r}(F) \gtrsim r^{-\Psi(r,\theta)}$.

Alternative asymptotic formula

- Can reformulate result using order-reversing transformation $x = \log \log(1/r)$. (This sends $[r, r^{\theta}]$ to $[x \log(1/\theta), x]$.)
- For $0 \le \lambda \le d$ let $\mathcal{G}(\lambda, d)$ be the set of continuous functions $g: \mathbb{R} \to [\lambda, d]$ such that

$$D^+g(x) \in [\lambda - g(x), d - g(x)],$$

where the Dini derivative is

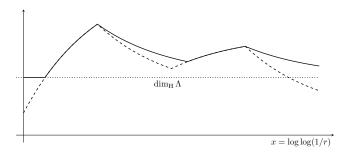
$$D^+g(x) := \limsup_{\varepsilon \to 0^+} \frac{g(x+\varepsilon) - g(x)}{\varepsilon}.$$

• B.–Rutar (2022) observed that if $E \subset \mathbb{R}^d$ is bounded then $s_E(\exp(\exp(x)) \asymp g(x))$ for some $g \in \mathcal{G}(0,d)$ (we say that E has covering class g), and conversely any $g \in \mathcal{G}(0,d)$ has $s_E(\exp(\exp(x)) \asymp g(x))$ for some E.

Alternative asymptotic formula

Theorem (B.–Rutar)

If P has covering class $f \in \mathcal{G}(0,d)$ and g is the pointwise minimal function $g \geq f$ satisfying $g \in \mathcal{G}(\dim_H F, d)$ then F has covering class g.



 ${}^{\iota}N_r(F) \geq N_r(P)$ is as small as possible while being at least $\dim_H F$ -dimensional between all pairs of scales.'

Dynamical interpretation

Theorem (Barreira (1996), Gatzouras-Peres (1997))

If $f: M \to M$ is an expanding, C^1 conformal map of a Riemannian manifold and $F \subseteq M$ is **compact** and invariant (i.e. f(F) = F and $f^{-1}(F) \cap U \subseteq F$ for a neighbourhood U of F), then

$$\underline{\dim}_{\mathrm{H}}F = \underline{\dim}_{\mathrm{B}}F = \dim_{\mathrm{B}}F.$$

Thm (Baker–B.–Feng–Lai–Xiong (2025+))

There is an invariant set F for a **Lipschitz** expanding map on $\mathbb R$ with

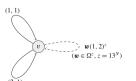
$$\underline{\mathsf{dim}}_{\mathrm{H}}F < \underline{\mathsf{dim}}_{\mathrm{B}}F < \underline{\mathsf{dim}}_{\mathrm{B}}F.$$

Non-conformal dynamics

Thm (Jurga (2023))

There is a sub-self-affine set $(F \subset \bigcup_i S_i(F))$ with

$$\underline{\dim}_{\mathsf{B}}\,F<\overline{\dim}_{\mathsf{B}}\,F.$$



(1, 12)	
(1, 11)	
(1, 10)	
(1, 9)	
(1, 8)	
(1, 7)	
(1, 6)	
(1, 5)	
(1, 4)	
(1, 3)	
(1, 2)	
(1, 1)	(2, 1)

Construction of the set inside a Bedford–McMullen carpet. Picture by N. Jurga.

Thm (Bedford (1984), McMullen (1984), Jurga (2023))

If F is invariant for $(x, y) \mapsto (mx \mod 1, ny \mod 1)$ then $\dim_H F < \underline{\dim}_B F$ or $\underline{\dim}_B F < \overline{\dim}_B F$ are both possible.

Thank you for listening! 谢谢大家