Fourier decay for nonlinear pushforwards of self-similar measures

Amlan Banaji¹

Loughborough University

¹Based on joint work with Han Yu, https://arxiv.org/abs/2503.07508

Except where otherwise noted, content on these slides "Fourier decay for nonlinear pushforwards of self-similar measures" is © 2025 Amlan Banaji and is licensed under a Creative Commons Attribution 4.0 International license

Fourier transform of measures

• Fourier transform of a measure μ on \mathbb{R}^k is the function $\widehat{\mu} \colon \mathbb{R}^k \to \mathbb{C}$,

$$\widehat{\mu}(\xi) = \int_{\mathbb{R}^k} e^{-2\pi i \langle \xi, x \rangle} d\mu(x).$$

- Decay rates of $|\widehat{\mu}(\xi)| \to 0$ as $|\xi| \to \infty$ have applications to normality of μ -typical points, Fourier uniqueness, Fourier restriction...
- ullet If μ is Cantor–Lebesgue measure,

$$\widehat{\mu}(1) = \widehat{\mu}(3) = \widehat{\mu}(9) = \cdots$$

but $|\widehat{\mu}(\xi)|$ decays outside a "zero-dimensional" set of ξ .

Nonlinear pushforwards

Principle: **nonlinear** dynamically defined measures often have polynomial Fourier decay.

Theorem (Kaufman, 1984)

If μ is Cantor–Lebesgue and $f(x)=x^2$ then the pushforward satisfies

$$|\widehat{f_*\mu}(\xi)|\lesssim |\xi|^{-\eta}$$
 for some $\eta>0$.

Can η be **quantified**?

 $\eta = 0.01$ works (Mosquera–Shmerkin, 2018)

 $\eta=$ 0.06 works (B.–Yu, 2024+)

Open question

Does arbitrary $\eta < \frac{1}{2}\frac{\log 2}{\log 3} \approx 0.32$ work (in which case supp $(f_*\mu)$ is a Salem set)?

Self-similar measures

Fix $r_1, \ldots, r_m \in (0,1)$, **commuting** $k \times k$ orthogonal maps O_1, \ldots, O_m , vectors $t_1, \ldots, t_m \in \mathbb{R}^k$, and weights $p_1, \ldots, p_m \in (0,1)$ with $p_1 + \cdots + p_m = 1$. The **self-similar measure** μ satisfies

$$\mu(A) = \sum_{i \in I} p_i \mu(S_i^{-1}(A)).$$

Notation:

- A: Assouad dim of supp(μ)
- ullet F: Frostman exponent of μ
- $\kappa_p := \sup \left\{ s \geq 0 : \int_{B(0,R)} |\widehat{\mu}(\xi)|^p d\xi \lesssim R^{k-s} \right\}$: Fourier ℓ^p dimension of μ .

Always $\kappa_1 \leq F \leq \kappa_2 \leq A$.

If OSC & measure of max dim: $\kappa_1 \leq F = \kappa_2 = A$.

Quantitative decay

Let μ be as above, and $f: \mathbb{R}^k \to \mathbb{R}$ is C^2 have graph $\{x, f(x)\}_{x \in \mathbb{R}^k} \subset \mathbb{R}^{k+1}$ having **non-vanishing Gaussian curvature** over $\sup(\mu)$.

Theorem (B.-Yu)

If F>k/2 then $|\widehat{f_*\mu}(\xi)|\lesssim |\xi|^{-\eta}$ for $\eta>0$ indep. of f. Can take any

$$0<\eta<\max\left\{\frac{2\kappa_2-k}{4+2A-k},\frac{F+\kappa_1-k}{2-k+2A+\kappa_1-F}\right\}.$$

Missing digit measures

- Let μ_b be the natural self-similar measure on the set of numbers whose base-b expansion misses digit 0.
- Chow-Varjú-Yu (2024+): $\kappa_1 \to 1$ as $b \to \infty$.

Corollary

If $f: \mathbb{R} \to \mathbb{R}$ has f'' > 0, then $|\widehat{f_*\mu_b}(\xi)| \lesssim |\xi|^{-\eta}$, where we can take $\eta = 1/3 - o_b(1)$.

If μ_b were Salem (this is not known) then one could take $\eta=1/2-o_b(1)$.

Nonlinear arithmetic

- Arithmetic product of $X, Y \subseteq \mathbb{R}$ is $X \cdot Y := \{xy : x \in X, y \in Y\} \subseteq \mathbb{R}$.
- Multiplicative convolution $\mu \cdot \nu$ of measures on $\mathbb R$ is pushforward of $\mu \times \nu$ under f(x,y) = xy.
- If X, Y are "large" (dimension), when does this imply $X \cdot Y$ is "large" (positive Lebesgue measure)?
- Generalised Marstrand projection theorem (Peres–Schlag, 2000): $K \subset \mathbb{R}^2$ compact, $\dim_H K > 1$, P_a a family of smooth maps (satisfying conditions), then $P_a(K)$ has positive measure for "almost every" a.

Arithmetic of self-similar sets

When can exceptional directions be removed?

Theorem (Hochman-Shmerkin, 2012)

If self-similar set E has some contraction ratio s and F has a contraction ratio t with $\log s/\log t \notin \mathbb{Q}$ then $\dim_{\mathrm{H}}(E \cdot F) = \min\{\dim_{\mathrm{H}}E + \dim_{\mathrm{H}}F, 1\}.$

Conjectures

- Let E, F be self-similar sets in \mathbb{R} . If $\dim_H E + \dim_H F > 1$, then $Leb(E \cdot F) > 0$.
- Let μ, ν be self-similar measures on \mathbb{R} . If $\dim_H \mu + \dim_H \nu > 1$ then $\mu \cdot \nu$ is absolutely continuous.

Note f(x, y) is a **nonlinear** projection! Won't work for linear projections or E + F (recall lan Morris's talk).

Progress towards conjecture for measures

Theorem (B.–Yu)

 \bullet If μ is self-similar with SSC and natural weights and

$$\dim_{\mathrm{H}} \mu > (\sqrt{65} - 5)/4 \approx 0.765...$$

then $\mu \cdot \mu$ has an L^2 density.

• If we only assume exponential separation (and consider the measure of maximal dimension), conclusion holds when $\dim_{\rm H} \mu > 7/9 \approx 0.777....$

Progress for sets

No separation conditions!

Theorem (B.-Yu)

If $E, F \subset \mathbb{R}$ are self-similar with $\min\{\dim_{\mathrm{H}} E, \dim_{\mathrm{H}} F\} > (\sqrt{65} - 5)/4$ then $\mathrm{Leb}(E \cdot F) > 0$. Also if $R_{(a,b)}$ is the radial projection from (a,b) then

Leb $(R_{a,b}(F \times F)) > 0$ for all $(a,b) \notin F \times F$.

Proof idea: take a SSC subsystem with ε dimension loss, put natural measure on it, apply corollary for measures.

Thank you for listening!