Fourier decay of non-linear images of self-similar measures

Amlan Banaji¹

Loughborough University

¹Based on joint work with Simon Baker https://arxiv.org/abs/2401.01241

Except where otherwise noted, content on these slides "Fourier decay of non-linear images of self-similar measures" is © 2023 Amlan Banaji and is licensed under a Creative Commons Attribution 4.0 International license

Amlan Banaji (Loughborough University)

1/8

• The Fourier transform $\hat{\mu}: \mathbb{R} \to \mathbb{C}$ of a Borel probability measure μ on \mathbb{R} is

$$\hat{\mu}(\xi) \coloneqq \int_{-\infty}^{\infty} e(\xi x) d\mu(x),$$

where $e(t) := e^{-2\pi i t}$.

- Given a measure, one can ask:
 - Is μ Rajchman? Does $\hat{\mu}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$?
 - If so, does it have polynomial Fourier decay

$$|\hat{\mu}(\xi)| \leq C |\xi|^{-\varepsilon}$$
 for all $\xi \neq 0$?

• • • • • • • • • • • •

• Given an iterated function system (IFS) $\{\phi_i(x) = r_i x + t_i\}_{i=1}^{l}$, and positive weights $p_1 + \cdots + p_m = 1$, the self-similar measure μ satisfies

$$\mu(B) = \sum_{i=1}^{l} p_i \mu(\phi_i^{-1}(B))$$
 for all Borel $B \subset \mathbb{R}$

Throughout, we assume that μ is not a single atom.

- Solomyak ('21): outside set of exceptional parameters with zero Hausdorff dimension, self-similar measures have polynomial Fourier decay.
- The (1/2, 1/2) measure on the middle-third Cantor set is not Rajchman.

(日)

Results

Let μ be any non-atomic self-similar measure on \mathbb{R} (we impose no homogeneity or separation assumptions).

Theorem (Baker–B. / Algom–Chang–Wu–Wu)

Let $F: \mathbb{R} \to \mathbb{R}$ be C^2 with F''(x) > 0 for all $x \in \mathbb{R}$. There exists $\varepsilon = \varepsilon(\mu) > 0$ (independent of F) and $C = C(\mu, F) > 0$ such that

$$|\widehat{F\mu}(\xi)| \leq C |\xi|^{-\varepsilon}$$
 for all $\xi \neq 0$.

Combining with Davenport-Erdős-LeVeque ('63) gives:

Corollary

If $F: \mathbb{R} \to \mathbb{R}$ is

- C^2 with F'' > 0, or
- a polynomial with $\deg(f) \geq 2$,

then $F\mu$ -almost every number is normal in every base.

イロト イヨト イヨト

Disintegrating μ

- The theorem is already known when μ is homogeneous (Kaufman ('84), Chang–Gao ('17+), Mosquera–Shmerkin ('18)), since then μ is an infinite convolution so μ̂ is an infinite product.
- Iterate our inhomogeneous IFS to get two well-separated maps ϕ_1,ϕ_2 with the same contraction ratio and probability.

Given words \mathbf{a}, \mathbf{b} of fixed length $k \gg 1$, write $\mathbf{a} \sim \mathbf{b}$ if $\forall i$ either $a_i = b_i$ or $a_i, b_i \in \{1, 2\}$. Put a probability measure P on the space Ω of infinite sequences of equivalence classes. Given $\omega \in \Omega$, define a *statistically* self-similar measure μ_{ω} supported on $\{\pi(\omega') : \forall n, \omega'_n \in [\omega_n]\}$. Then

$$\mu = \int_{\Omega} \mu_{\omega} \, dP(\omega)$$

• Each μ_{ω} is an infinite convolution

$$\mu_{\omega} = *_{m=1}^{\infty} \frac{1}{\#[\mathbf{a}_m]} \sum_{i \in \Delta_{[\mathbf{a}_m]}} \delta_{t_i \cdot \prod_{j=1}^{m-1} r_{[\mathbf{a}_j]}}.$$

Therefore

$$\widehat{\mu}_{\omega}(\xi) = \prod_{m=1}^{\infty} \frac{1}{\#[\mathbf{a}_m]} \sum_{i \in \Delta_{[\mathbf{a}_m]}} e\left(\xi \cdot t_i \cdot \prod_{j=1}^{m-1} r_{[\mathbf{a}_j]}\right).$$
Provide (another product the second second

Amlan Banaji (Loughborough University)

- Kaufman ('84), Tsujii ('15): |µ̂(ξ)|≤ |ξ|^{-δ} outside a 'sparse' set of frequencies ξ.
- We use large deviation theory and an Erdős–Kahane argument to find, for each T' > 0, $\Omega_{T'}$ with $P(\Omega \setminus \Omega_2) \leq C'_k(T')^{-\varepsilon_1}$ and such that $\forall T \geq T' \forall \omega \in \Omega_{T'}$,

$$\{\xi \in [-T, T] : |\widehat{\mu_{\omega}}(\xi)| \ge T^{-\varepsilon_2}\}$$

can be covered by $C_k T^{o_k(1)}$ intervals of length 1.

< □ > < 同 > < 回 > < Ξ > < Ξ

Non-linear images

• Writing $\mu_{\omega} = \mu_{N_{\omega}} * \lambda_{N_{\omega}}$ for a well-chosen N_{ω} , and Taylor expanding F,

$$\begin{split} \widehat{F\mu_{\omega}}(\xi)| &= \left| \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e(\xi F(x+y)) d\mu_{N_{\omega}}(x) d\lambda_{N_{\omega}}(y) \right| \\ &\leq \int_{-\infty}^{\infty} \left| \widehat{\mu_{\sigma^{N_{\omega}}\omega}} \left(\xi F'(x) \prod_{n=1}^{N_{\omega}} r_{[\mathbf{a}_n]} \right) \left| d\mu_{N_{\omega}}(x) + C\xi^{-1/3} \right| . \end{split}$$

- Use F" > 0 to bound (with high P-probability) the intervals of ξ which do not result in decay for μ_{σ^{Nω}ω}.
 - Bound the measure of these intervals by using large deviations theory to show that $\mu_{\sigma^{N_{\omega}}\omega}$ has Frostman exponent s > 0 (independent of ω , k):

$$\mu_{\omega}((x,x+r)) \leq r^{s}.$$

• Conclusion of proof: writing $\Omega = Good \sqcup Bad$,

$$|\widehat{F\mu}(\xi)| \leq \int_{Good} |\widehat{F\mu_{\omega}}(\xi)| \, dP(\omega) + P(Bad) \leq C_1 |\xi|^{-\delta} + C_2 |\xi|^{-\eta}.$$

イロト 不得 トイヨト イヨト

Thank you for listening!

Questions welcome

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A