Metric spaces where geodesics are never unique

Amlan Banaji¹

¹Based on https://arxiv.org/abs/2209.00598

Except where otherwise noted, content on these slides "Metric spaces where geodesics are never unique" is © 2022 Amlan Banaji and is licensed under a Creative Commons Attribution 4.0 International license

Amlan Banaji

- Geodesics describe the 'shortest paths' through a space.
- Throughout, (X, d) denotes a metric space with more than one point.

Definition

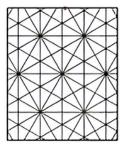
If $u, v \in X$ distinct, a *geodesic* from u to v is a function $\gamma: [0, 1] \to X$ such that $\gamma(0) = u, \gamma(1) = v$, and

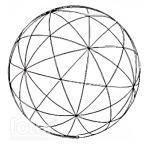
$$d(\gamma(s),\gamma(t)) = |s-t|d(u,v)$$
 for all $s,t\in[0,1]$.

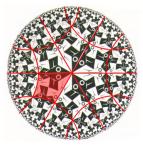
• They are important in general relativity.

Image: A math a math

Uniqueness of geodesics







Euclidean Uniquely geodesic Based on image by Vladimir Marković Spherical Not uniquely geodesic Based on image by Vladimir Marković Hyperbolic (artwork by Escher)² Uniquely geodesic

Definition

A metric space (X, d) is *multigeodesic* if for all distinct $u, v \in X$ there exist at least two distinct geodesics from u to v.

²Image by Anneke Bart and Bryan Clair https://mathstat.slu.edu/escher/index.php/File:Hyp-circle-limit-i-tess.png

Amlan Banaji

Multigeodesic spaces

1st December, 2022 3/8

Normed vector spaces

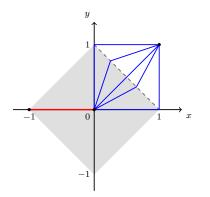


Figure: Geodesics in $(\mathbb{R}^2, ||\cdot||_1)$ where $||(x, y)||_1 := |x|+|y|$.

Theorem (B., to appear in Amer. Math. Monthly)

A real normed vector space $(X, ||\cdot||)$ is multigeodesic if and only if for all $x \in X$ with ||x||=1 there exist $C \in (0, 1)$ and $y \in X \setminus \{Cx\}$ such that ||y||=C and ||x-y||=1-C.

Amlan Banaji

Corollary

The space $(C([0,1]), ||\cdot||_1)$, where $||f||_1 := \int_0^1 |f(x)| dx$, is multigeodesic.

Proof.

Let $g: [0,1] \to \mathbb{R}$ be continuous with $||g||_1 = 1$. Define h(x) = xg(x) and let $C := ||h||_1$.

$$\begin{split} ||h||_1 + ||g - h||_1 &= \int_0^1 |xg(x)| dx + \int_0^1 |g(x) - xg(x)| dx \\ &= \int_0^1 (x + (1 - x)) |g(x)| dx \\ &= ||g||_1, \end{split}$$

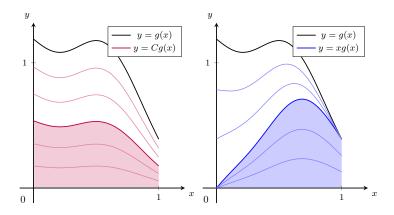
so $||g - h||_1 = ||g||_1 - ||h||_1 = 1 - C$. Therefore by the theorem, $(C([0,1]), ||\cdot||_1)$ is multigeodesic.

Image: A match the second s

L^1 spaces

Corollary

The space $(C([0,1]), ||\cdot||_1)$, where $||f||_1 := \int_0^1 |f(x)| dx$, is multigeodesic.



However, L^p spaces for p > 1 are not multigeodesic.

Amlan Banaji

・ロト ・回ト ・ヨト

Laakso spaces

In general multigeodesic metric spaces, it might not be possible to make geodesics disjoint.

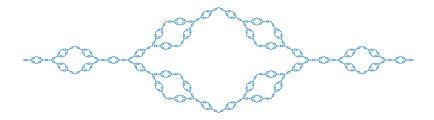


Figure: The Laakso space is multigeodesic.

Thank you for listening!

Questions welcome

Amlan Banaji

1st December, 2022 8 / 8

Image: A math a math