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Microthesis: Intermediate Dimensions

AMLAN BANAJI

Hausdorff and box dimension are two notions of fractal dimension, and the intermediate dimensions are a
family of dimensions which lie between them. In this microthesis, we describe the form that these dimensions
can take for general sets and for a class of self-affine fractal sets.

Fractal geometry

Much of the classical study of geometry relates to
smooth objects such as manifolds, which have a well-
defined integer dimension. However, many natural
phenomena, such as the British coastline, display
much more detailed and intricate structure across a
range of scales, and often have some form of self-
similarity, meaning that small parts of it have similar
properties to the whole. Objects with these proper-
ties are often called fractals, though the term has
no precise mathematical definition. The ‘length’ of
the British coastline increases as we decrease the
length § of the ruler used to measure it, and scales
very roughly like a constant multiple of 6792 (i.e. we
need to use ~ 612 rulers of length &) over a range
of scales. It therefore makes sense to regard the
‘dimension’ of the coastline as being 1.2.

To describe the theory of fractal dimensions more
formally, we work with non-empty bounded subsets
of Euclidean space R? throughout. The box dimen-
sion of such a set F' is defined by
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(if the limit exists), where Ns(F) is the smallest num-
ber of open balls of diameter 6 needed to cover F.
There is another notion of dimension, called Haus-
dorff dimension, which is a lower bound for box di-
mension, and is perhaps more widely used across
mathematics. It is defined by

dimy F = inf{s > 0: for all &£ > 0 there is a cover
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Intermediate dimensions

The key difference between the two dimensions dis-
cussed above is that all the sets in a cover for box
dimension have equal diameter ¢, whereas for Haus-
dorff dimension the diameters of covering sets lie
in an interval [0,6]. The intermediate dimensions
dimy F are defined by restricting the allowable di-
ameters of sets in the cover to intervals of the form
[61/9,5], where 6 € (0,1] is a fixed parameter. They
satisfy dimyg F < dimy F < dimp F with dim; F =
dimp F, and we define dimg /' = dimg F. These
dimensions provide more nuanced geometric infor-
mation than Hausdorff or box dimension in isolation.

Definition 1. (Falconer-Fraser-Kempton [3]). For a
set F c R4 6 € (0,1] and s € [0,d], define

S359(F) = inf { Z(diamU,—)s :{U;}; is a cover of F
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such that 617 < diamU; < ¢ for all z'}.
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then we say that s is the intermediate dimension of
F at 6, and write s = dimy F.

If the limit in the definition of box or intermediate
dimension does not exist then we can use limsup
and liminf to define upper and lower versions of the
dimensions. The function 6 +— dimg F is always non-
decreasing in 6, and is continuous for 6 € (0,1] but
not generally at § = 0.

For many simple sets the intermediate dimensions
have a simple form with at most finitely many points
of non-differentiability, for example dimy({1/n : n >
1}) = 6/ + 6) (see [3]). In contrast, the follow-
ing characterisation shows that for general sets, the
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intermediate dimensions can have highly varied be-
haviour. Recall that the upper Dini derivative of a
function f: R — R at x is given by

D* f(x) := limsup M
0t &
Theorem 1. (Bangji-Rutar [2]). Let &: [0,1] — [0,d]
be any function. Then there exists F c R% with
dimg F = h(0) if and only if h is non-decreasing, is
continuous on (0,1], and satisfies

h(6)(d — h(6))

D+
h(6) < 70

for all 8 € (0,1).

It follows that if f is any non-decreasing Lipschitz
function on [0,1], there exist ¥ € R and a > 0,
b € R such that dimg F' = af(6) + b. In particular,
the function can be non-differentiable at each point
in a dense subset of (0,1). A key step in the proof
of Theorem 1is the construction of a Cantor set with
non-uniform subdivision ratios.

Bedford-McMullen carpets

An iterated function system (IFS) is a finite set of con-
traction maps {S;: D — D}?il, where D c R? is
closed. Given an IFS, there is a unique non-empty
compact set A, called the attractor, satisfying A =

fil S;(A). Familiar fractals such as the middle-third
Cantor set and the Sierpinski triangle are self-similar
sets, which are the attractors of IFSs consisting of
similarities (i.e. maps which contract distances by a
constant ratio). The Hausdorff and box dimensions
of self-similar sets always coincide, so we work with
more general self-affine sets, where the contractions
are affine. We work with the following particular class
of sets, which have become a standard example in
fractal geometry. Divide a square into an m X z grid,
where 2 < m < n, and choose a subset of the rect-
angles. Write y := log n/log m. Consider the IFS of
maps which send the square onto each of the chosen
rectangles, preserving orientation. The attractor A is
called a Bedford-McMullen carpet, after the authors
who independently introduced these sets in 1984
and calculated their Hausdorff and box dimensions
(which typically differ).

In [1], the author and Kolossvary calculate a pre-
cise formula (unfortunately too complicated to
state here) for the intermediate dimensions of
all Bedford-McMullen carpets. The proof uses
tools from probability, dynamics and informa-
tion theory, and involves explicitly construct-
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ing a cover using scales 6,607,67,...,07 and
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(for L > 1). The intermediate dimensions have a
more complicated form than previously observed for
other classes of fractals.

A Bedford-McMullen carpet and the graph of its
intermediate dimensions. Note that the graph has
countably many phase transitions (see [1]) and is
continuous on [0,1] (see [3]).

Theorem 2. (Bangji-Kolossvary [1]). Let A be a
Bedford-McMullen carpet with dimg A < dimg A.
Then the function § +— dimgyA is strictly increas-
ing. Moreover, for all integers L > 1, this function
is real analytic and strictly concave on the interval
(y~L,y=E=D), but is non-differentiable at § = y~L.

Our formula also has useful applications. In particu-
lar, we use it to give a necessary condition for there
to exist a Lipschitz bijection with a Lipschitz inverse
between two Bedford-McMullen carpets.
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