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Microtheses and Nanotheses provide space in the Newsletter for current and recent research students to
communicate their research �ndings with the community. We welcome submissions for this section from
current and recent research students. See newsletter.lms.ac.uk for preparation and submission guidance.

Microthesis: Intermediate Dimensions

AMLAN BANAJI

Hausdor� and box dimension are two notions of fractal dimension, and the intermediate dimensions are a
family of dimensions which lie between them. In this microthesis, we describe the form that these dimensions
can take for general sets and for a class of self-a�ne fractal sets.

Fractal geometry

Much of the classical study of geometry relates to
smooth objects such as manifolds, which have a well-
de�ned integer dimension. However, many natural
phenomena, such as the British coastline, display
much more detailed and intricate structure across a
range of scales, and often have some form of self-
similarity, meaning that small parts of it have similar
properties to the whole. Objects with these proper-
ties are often called fractals, though the term has
no precise mathematical de�nition. The ‘length’ of
the British coastline increases as we decrease the
length X of the ruler used to measure it, and scales
very roughly like a constant multiple of X−0.2 (i.e. we
need to use ≈ X−1.2 rulers of length X) over a range
of scales. It therefore makes sense to regard the
‘dimension’ of the coastline as being 1.2.

To describe the theory of fractal dimensions more
formally, we work with non-empty bounded subsets
of Euclidean space ℝd throughout. The box dimen-
sion of such a set F is de�ned by

dimB F B lim
X→0

logNX (F )
− log X

(if the limit exists), where NX (F ) is the smallest num-
ber of open balls of diameter X needed to cover F .
There is another notion of dimension, called Haus-
dor� dimension, which is a lower bound for box di-
mension, and is perhaps more widely used across
mathematics. It is de�ned by

dimH F B inf{s ≥ 0 : for all Y > 0 there is a cover

{Ui }∞i=1 of F such that
∑
i

(diamUi )s ≤ Y}.

Intermediate dimensions

The key di�erence between the two dimensions dis-
cussed above is that all the sets in a cover for box
dimension have equal diameter X, whereas for Haus-
dor� dimension the diameters of covering sets lie
in an interval [0, X]. The intermediate dimensions
dim\ F are de�ned by restricting the allowable di-
ameters of sets in the cover to intervals of the form
[X1/\ , X], where \ ∈ (0,1] is a �xed parameter. They
satisfy dimH F ≤ dim\ F ≤ dimB F with dim1 F =

dimB F , and we de�ne dim0 F = dimH F . These
dimensions provide more nuanced geometric infor-
mation than Hausdor� or box dimension in isolation.

De�nition 1. (Falconer–Fraser–Kempton [3]). For a
set F ⊂ ℝd , \ ∈ (0,1] and s ∈ [0,d ], de�ne

S sX,\ (F ) B inf
{∑

i

(diamUi )s : {Ui }i is a cover of F

such that X1/\ ≤ diamUi ≤ X for all i
}
.

If there exists s such that
logS s

X,\
(F )

− log X → 0 as X → 0,
then we say that s is the intermediate dimension of
F at \, and write s = dim\ F .

If the limit in the de�nition of box or intermediate
dimension does not exist then we can use limsup
and liminf to de�ne upper and lower versions of the
dimensions. The function \ ↦→ dim\ F is always non-
decreasing in \, and is continuous for \ ∈ (0,1] but
not generally at \ = 0.

For many simple sets the intermediate dimensions
have a simple form with at most �nitely many points
of non-di�erentiability, for example dim\ ({1/n : n ≥
1}) = \/(1 + \) (see [3]). In contrast, the follow-
ing characterisation shows that for general sets, the
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intermediate dimensions can have highly varied be-
haviour. Recall that the upper Dini derivative of a
function f : ℝ→ ℝ at x is given by

D+ f (x) B lim sup
Y→0+

f (x + Y) − f (x)
Y

.

Theorem 1. (Banaji–Rutar [2]). Let h : [0,1] → [0,d ]
be any function. Then there exists F ⊂ ℝd with
dim\ F = h (\) if and only if h is non-decreasing, is
continuous on (0,1], and satis�es

D+h (\) ≤ h (\) (d − h (\))
d\

for all \ ∈ (0,1).

It follows that if f is any non-decreasing Lipschitz
function on [0,1], there exist F ⊂ ℝ and a > 0,
b ∈ ℝ such that dim\ F = a f (\) + b . In particular,
the function can be non-di�erentiable at each point
in a dense subset of (0,1). A key step in the proof
of Theorem 1 is the construction of a Cantor set with
non-uniform subdivision ratios.

Bedford–McMullen carpets

An iterated function system (IFS) is a �nite set of con-
traction maps {Si : D → D}Ni=1, where D ⊂ ℝd is
closed. Given an IFS, there is a unique non-empty
compact set Λ, called the attractor, satisfying Λ =⋃N
i=1 Si (Λ). Familiar fractals such as the middle-third

Cantor set and the Sierpinski triangle are self-similar
sets, which are the attractors of IFSs consisting of
similarities (i.e. maps which contract distances by a
constant ratio). The Hausdor� and box dimensions
of self-similar sets always coincide, so we work with
more general self-a�ne sets, where the contractions
are a�ne. We work with the following particular class
of sets, which have become a standard example in
fractal geometry. Divide a square into an m × n grid,
where 2 ≤ m < n, and choose a subset of the rect-
angles. Write W B log n/logm. Consider the IFS of
maps which send the square onto each of the chosen
rectangles, preserving orientation. The attractor Λ is
called a Bedford–McMullen carpet, after the authors
who independently introduced these sets in 1984
and calculated their Hausdor� and box dimensions
(which typically di�er).

In [1], the author and Kolossváry calculate a pre-
cise formula (unfortunately too complicated to
state here) for the intermediate dimensions of
all Bedford–McMullen carpets. The proof uses
tools from probability, dynamics and informa-
tion theory, and involves explicitly construct-
ing a cover using scales X,XW , XW

2
, . . . , XW

L−1
and

X1/\ , X1/(W\) , . . . , X1/(W
L−1\) when W−L < \ < W−(L−1)

(for L ≥ 1). The intermediate dimensions have a
more complicated form than previously observed for
other classes of fractals.

A Bedford–McMullen carpet and the graph of its
intermediate dimensions. Note that the graph has
countably many phase transitions (see [1]) and is
continuous on [0,1] (see [3]).

Theorem 2. (Banaji–Kolossváry [1]). Let Λ be a
Bedford–McMullen carpet with dimH Λ < dimB Λ.
Then the function \ ↦→ dim \ Λ is strictly increas-
ing. Moreover, for all integers L ≥ 1, this function
is real analytic and strictly concave on the interval
(W−L , W−(L−1) ), but is non-di�erentiable at \ = W−L .

Our formula also has useful applications. In particu-
lar, we use it to give a necessary condition for there
to exist a Lipschitz bijection with a Lipschitz inverse
between two Bedford–McMullen carpets.
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