Intermediate dimensions

Amlan Banaji¹

University of St Andrews

¹Includes joint work with:

- Haipeng Chen: https://arxiv.org/abs/2212.06961, J. Fractal Geom.

- István Kolossváry: https://arxiv.org/abs/2111.05625, Preprint

- Alex Rutar: https://arxiv.org/abs/2111.14678, Ann. Fenn. Math.

Except where otherwise noted, content on these slides "Intermediate dimensions" is ⓒ 2022 Amlan Banaji and is licensed under a Creative Commons Attribution 4.0 International license

Amlan Banaji (University of St Andrews)

Hausdorff dimension

- Different notions of dimension attempt to quantify the 'thickness' of fractal sets at small scales.
- Hausdorff dimension can be defined without using Hausdorff measure:

 $\dim_{\mathrm{H}} F = \inf\{s \ge 0 : \text{ for all } \varepsilon > 0 \text{ there exists a finite or countable cover}$

 $\{U_1, U_2, \ldots\}$ of F such that

 $\sum_{i} |U_i|^s \leq \varepsilon \}$

Figure: A cover using balls of different sizes. Picture by Jonathan Fraser.

イロト イヨト イヨト イヨト

Box dimension

• Upper box dimension is defined by

$$\overline{\dim}_{\mathrm{B}} F \coloneqq \limsup_{\delta \to 0^+} \frac{\log N_{\delta}(F)}{-\log \delta},$$

where $N_{\delta}(F)$ is the smallest number of balls of radius δ needed to cover F. • Alternative definition:

 $\overline{\dim}_{\mathrm{B}}F = \inf\{s \ge 0 : \text{ for all } \varepsilon > 0 \text{ there exists } \delta_0 \in (0, 1] \text{ such that for all} \\ \delta \in (0, \delta_0) \text{ there exists a cover } \{U_1, U_2, \ldots\} \text{ of } F \text{ such} \\ \text{ that } |U_i| = \delta \text{ for all } i, \text{ and } \sum_i |U_i|^s \le \varepsilon \}.$

Figure: A cover using balls of the same size. Picture by Jonathan Fraser.

• Always
$$\dim_{\mathrm{H}} F \leq \overline{\dim}_{\mathrm{B}} F$$

イロト イポト イヨト イ

Falconer, Fraser and Kempton ('20) defined the upper θ -intermediate dimension for $\theta \in (0, 1)$, satisfying

$$\dim_{\mathrm{H}} F \leq \overline{\dim}_{\theta} F \leq \overline{\dim}_{\mathrm{B}} F.$$

$$\begin{split} \overline{\dim}_{\theta}F &\coloneqq \inf\{s \geq 0 : \text{ for all } \varepsilon > 0 \text{ there exists } \delta_0 \in (0,1] \text{ such that for all} \\ \delta \in (0,\delta_0) \text{ there exists a cover } \{U_1,U_2,\ldots\} \text{ of } F \text{ such} \\ \text{ that } \delta^{1/\theta} \leq |U_i| \leq \delta \text{ for all } i, \text{ and } \sum_i |U_i|^s \leq \varepsilon \,\}. \end{split}$$

Example of dimension interpolation (see also Assouad spectrum, Fraser-Yu, '18).

イロン イ団 とく ヨン イヨン

Polynomial sequences

• For
$$p \in (0,\infty)$$
 define $F_p := \{ n^{-p} : n \in \mathbb{N} \}.$

• These sets satisfy dim_H $F_{\rho} = 0$, dim_B $F_{\rho} = \frac{1}{\rho+1}$.

• Falconer–Fraser–Kempton ('20) showed that dim_{θ} $F_{\rho} = \frac{\theta}{\rho + \theta}$.

• Proof: cover with intervals of size δ until a certain point, then cover each dot with size $\delta^{1/\theta}$.

Amlan Banaji (University of St Andrews)

Popcorn function

The popcorn function $f:(0,1)
ightarrow \mathbb{R}$ is defined by

.

$$f(x) = \begin{cases} \frac{1}{q} & \text{ if } x = \frac{p}{q} \text{ where } 1 \le p < q, \ \gcd(p,q) = 1, \\ 0, & \text{ otherwise.} \end{cases}$$

.

• •

Figure: The graph $P \subset \mathbb{R}^2$ of the popcorn function

Theorem (Chen–Fraser–Yu, '22)

 $\dim_{\mathrm{B}} P = 4/3$

Proved using techniques from Diophantine approximation and probability theory, a

Amlan Banaji (University of St Andrews)

Popcorn function

Theorem (B.–Chen, '22+)

The intermediate dimensions satisfy

$$\dim_{\theta} P = \begin{cases} 1 & 0 \leq \theta \leq 1/2 \\ \frac{4\theta}{2\theta+1} & 1/2 < \theta \leq 1. \end{cases}$$

Iterated function systems (IFSs)

- Let X ⊂ ℝ^d be compact and let {S_i: X → X}_{i∈I} be a finite set of contractions (an IFS). By Hutchinson ('81) there is a unique non-empty compact attractor F satisfying F = ⋃_{i∈I} S_i(F).
- In this talk the open set condition is always satisfied: there exists a non-empty bounded open set U with U_{i∈I} S_i(U) ⊆ U with the union disjoint.
- If each S_i is assumed to be a similarity map with contraction ratio c_i then the Hausdorff and box dimensions of F coincide with the unique $h \ge 0$ satisfying Hutchinson's formula

$$\sum_{i \in I} c_i^h = 1.$$

Figure: The Sierpinski gasket has dimension $\log 3/\log 2$.

イロト イヨト イヨト イヨト

・ロト ・日下・ ・ ヨト・

A D F A A F F A

Image: A math a math

Image: A math a math

< ロ > < 四 > < 回 > < 回 > <</p>

Hausdorff and box dimensions

Figure: Three different Bedford-McMullen carpets. Picture by Jonathan Fraser.

Theorem (Bedford '84, McMullen '84)
$$\dim_{\mathrm{H}} \Lambda = \frac{1}{\log m} \log \left(\sum_{i=1}^{M} N_{i}^{\frac{\log m}{\log n}} \right); \qquad \dim_{\mathrm{B}} \Lambda = \frac{\log M}{\log m} + \frac{\log(N/M)}{\log n}.$$

Here, M := # non-empty columns, $N_i := \#$ maps in *i*th non-empty column, $N := N_1 + \cdots + N_M$. Hausdorff and box dimensions differ iff the carpets have non-uniform vertical fibres (which we always assume).

Amlan Banaji (University of St Andrews)

Graph of the intermediate dimensions

Figure: Here, $\gamma := \log n / \log m$

イロト イヨト イヨト

Formula for the intermediate dimensions (B.–Kolossváry, '21+)

• Define the Legendre transform

$$I(t) := \sup_{\lambda \in \mathbb{R}} \left\{ \lambda t - \log \left(\frac{1}{M} \sum_{j=1}^{M} N_j^{\lambda} \right) \right\}.$$

• For $s \in \mathbb{R}$, define the function $T_s : \mathbb{R} \to \mathbb{R}$ by

$$T_s(t) \coloneqq \left(s - rac{\log M}{\log m}\right) \log n + \gamma I(t).$$

• For $\ell \in \mathbb{N}$, write $T_s^{\ell} := \underbrace{T_s \circ \cdots \circ T_s}_{\ell \text{ times}}$, and T_s^0 is the identity. Define

$$t_{\ell}(s) \coloneqq T_s^{\ell-1}\left(\left(s - \frac{\log M}{\log m}\right)\log n\right).$$

For fixed θ ∈ (0, 1) let L = L(θ) ∈ N be such that γ^{-L} < θ ≤ γ^{-(L-1)}. Then dim_θ Λ is the unique solution s = s(θ) ∈ (dim_H Λ, dim_B Λ) to the equation

$$\gamma^{L}\theta \log N - (\gamma^{L}\theta - 1)t_{L}(s) + \gamma(1 - \gamma^{L-1}\theta)(\log M - I(t_{L}(s))) - s \log n = 0.$$

Intermediate dimensions of Bedford-McMullen carpets

- Phase transitions at negative integer powers of log n/log m.
- Real analytic and strictly concave between phase transitions
- Strictly increasing
- Right derivative tends to ∞ as $\theta \to 0$
- Continuous for θ ∈ [0, 1] (proved by Falconer–Fraser–Kempton ('20), used by Burrell–Falconer–Fraser ('21) to prove results on the box dimension of orthogonal projections of carpets)

Different possible shapes of the graph

・ロト ・回ト ・ヨト ・

Different possible shapes of the graph

Different possible shapes of the graph

イロト イヨト イヨト イ

- Upper bound: construct an intricate cover using scales $\delta, \delta^{\gamma}, \delta^{\gamma^2}, \ldots, \delta^{\gamma^{l-1}}$ and $\delta^{1/\theta}, \delta^{1/(\gamma\theta)}, \ldots, \delta^{1/(\gamma^{l-1}\theta)}$ (we need to use more than two scales when θ is small).
- The proof simplifies substantially when $\theta \ge 1/\gamma$ (use just largest and smallest scales) or $\theta = \gamma^{-k}$ (use scales $\delta, \delta^{\gamma}, \ldots, \delta^{\gamma^{k}}$).
- A cylinder of length δ has height $\approx \delta^{\gamma}$. We break the carpet into approximate square of size δ by stacking such cylinders. We cover depending on how parts of the symbolic representation of the approximate square relate to each other, using the method of types.
- Lower bound uses a variant of a mass distribution principle proved by Falconer, Fraser and Kempton ('20).

イロト イヨト イヨト

Multifractal analysis

• Let ν be the uniform Bernoulli measure supported on a Bedford–McMullen carpet, satisfying

$$u(A) = \sum_{i=1}^{N} \frac{1}{N} \nu(S_i^{-1}A) \text{ for all Borel sets } A \subset \mathbb{R}^2.$$

where N is the total number of contractions.

• Kenyon and Peres ('96) showed that ν is exact dimensional: the local dimension

$$\dim_{\mathrm{loc}}(\nu, x) = \lim_{r \to 0} \frac{\log \nu(B(x, r))}{\log r}$$

exists and is constant at ν -almost every $x \in \Lambda$.

• Jordan and Rams ('11) computed the multifractal spectrum of ν ,

$$f_{\nu}(\alpha) := \dim_{\mathrm{H}} \{ x \in \operatorname{supp} \nu : \dim_{\mathrm{loc}}(\nu, x) = \alpha \},$$

building on work of King ('95).

A D F A A F F A

Theorem (B.–Kolossváry, '21+)

If Λ , Λ' are Bedford–McMullen carpets with non-uniform vertical fibres, then the intermediate dimensions are equal for all θ if and only if the corresponding uniform Bernoulli measures have the same multifractal spectra.

If $f: \Lambda \to \Lambda'$ is bi-Lipschitz then $\dim_{\theta} \Lambda = \dim_{\theta} \Lambda'$ for all θ .

Corollary

If carpets Λ and Λ' with non-uniform vertical fibres are bi-Lipschitz equivalent then their uniform Bernoulli measures have the same multifractal spectra.

This improves a result of Rao, Yang and Zhang ('21+).

< □ > < 同 > < 回 > < Ξ > < Ξ

Attainable forms of intermediate dimensions

The upper Dini derivative of a function $h: \mathbb{R} \to \mathbb{R}$ at x is given by

$$D^+h(x) = \limsup_{\varepsilon \to 0^+} \frac{h(x+\varepsilon) - h(x)}{\varepsilon}$$

Theorem (B.–Rutar, '22)

Let $h: [0,1] \to [0,d]$ be any function. Then there exists a non-empty bounded set $F \subset \mathbb{R}^d$ with dim_{θ} $F = h(\theta)$ if and only if h is non-decreasing, is continuous on (0,1], and satisfies

$$D^+h(heta) \leq rac{h(heta)(d-h(heta))}{d heta} \qquad ext{for all } heta \in (0,1).$$

Proof idea: Necessity: 'Break up' the largest sets in the cover and 'fatten' the smallest ones, to get a new cover corresponding to larger θ . Sufficiency: construct an appropriate homogeneous Moran set M and prove that $\overline{\dim}_{\theta} M = \limsup_{\delta \to 0} (\inf_{\phi \in [\delta^{1/\theta}, \delta]} \frac{\log N_{\phi}(M)}{-\log \phi})$

イロト イヨト イヨト イヨト

Consequence: if f is any non-decreasing Lipschitz function on [0, 1], there exist $a > 0, b \in \mathbb{R}$ and $F \subset \mathbb{R}$ such that $\dim_{\theta} F = af(\theta) + b$. In particular, the following are possible:

- Strictly increasing then constant then strictly increasing.
- Strictly convex, strictly concave or linear.
- Non-differentiable at each point in a dense subset of [0, 1].

< □ > < 同 > < 回 > < Ξ > < Ξ

Recovering the interpolation

If $F_{\log} := \{0\} \cup \{1/(\log n) : n \in \mathbb{N}\}$, then dim $_{\theta} F_{\log} = 1$ for all $\theta \in (0, 1]$, so there is not full interpolation.

Theorem (B., '20)

If $F \subset \mathbb{R}^d$ is non-empty and compact then for all $s \in [\dim_H F, \overline{\dim_B} F]$ there exists a function $\Phi_s: (0,1) \to (0,1)$ that is monotonic and satisfies $\Phi_s(\delta) \leq \delta$ for all δ , such that if we define

$$\overline{\dim}^{\Phi_s} F = \inf\{s \ge 0 : \text{ for all } \varepsilon > 0 \text{ there exists } \delta_0 \in (0, 1] \text{ such that for all} \\ \delta \in (0, \delta_0) \text{ there exists a cover } \{U_1, U_2, \ldots\} \text{ of } F \text{ such that} \\ \Phi_s(\delta) \le |U_i| \le \delta \text{ for all } i, \text{ and } \sum_i |U_i|^s \le \varepsilon \}$$

then $\overline{\dim}^{\Phi_s} F = s$.

Proof idea: define

$$\Phi_s(\delta) \coloneqq \sup\{x \in [0, \delta] : \text{there exists a finite cover } \{U_i\} \text{ of } F$$

such that $x \leq |U_i| \leq \delta$ for all i and $\sum |U_i| \leq 1$.

Thank you for listening!

谢谢大家

Questions welcome

イロト イポト イヨト イ