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Hausdorff dimension

Different notions of dimension attempt to quantify the ‘thickness’ of fractal
sets at small scales.

Hausdorff dimension can be defined without using Hausdorff measure:

dimHF = inf{ s ≥ 0 : for all ε > 0 there exists a finite or countable cover

{U1,U2, . . .} of F such that
∑
i

|Ui |s≤ ε }

Figure: A cover using balls of different sizes. Picture by Jonathan Fraser.
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Box dimension

Upper box dimension is defined by

dimBF := lim sup
δ→0+

logNδ(F )

− log δ
,

where Nδ(F ) is the smallest number of balls of radius δ needed to cover F .
Alternative definition:

dimBF = inf{ s ≥ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all

δ ∈ (0, δ0) there exists a cover {U1,U2, . . .} of F such

that |Ui |= δ for all i , and
∑
i

|Ui |s≤ ε }.

Figure: A cover using balls of the same size. Picture by Jonathan Fraser.

Always dimHF ≤ dimBF .
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Intermediate dimensions

Falconer, Fraser and Kempton (’20) defined the upper θ-intermediate dimension
for θ ∈ (0, 1), satisfying

dimH F ≤ dimθF ≤ dimBF .

dimθF := inf{ s ≥ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all

δ ∈ (0, δ0) there exists a cover {U1,U2, . . .} of F such

that δ1/θ ≤ |Ui |≤ δ for all i , and
∑
i

|Ui |s≤ ε }.

Example of dimension interpolation (see also Assouad spectrum, Fraser–Yu, ’18).
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Polynomial sequences

For p ∈ (0,∞) define Fp := { n−p : n ∈ N }.

These sets satisfy dimH Fp = 0, dimB Fp = 1
p+1 .

Falconer–Fraser–Kempton (’20) showed that dimθ Fp = θ
p+θ .

Proof: cover with intervals of size δ until a certain point, then cover each dot
with size δ1/θ.
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Popcorn function

The popcorn function f : (0, 1)→ R is defined by

f (x) =

{
1
q if x = p

q where 1 ≤ p < q, gcd(p, q) = 1,

0, otherwise.

Figure: The graph P ⊂ R2 of the popcorn function

Theorem (Chen–Fraser–Yu, ’22)

dimB P = 4/3

Proved using techniques from Diophantine approximation and probability theory.
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Popcorn function

Theorem (B.–Chen, ’22+)

The intermediate dimensions satisfy

dimθ P =

{
1 0 ≤ θ ≤ 1/2

4θ
2θ+1 1/2 < θ ≤ 1.

Amlan Banaji (University of St Andrews) Intermediate dimensions October 21, 2022 7 / 21



Iterated function systems (IFSs)

Let X ⊂ Rd be compact and let {Si :X → X}i∈I be a finite set of
contractions (an IFS). By Hutchinson (’81) there is a unique non-empty
compact attractor F satisfying F =

⋃
i∈I Si (F ).

In this talk the open set condition is always satisfied: there exists a
non-empty bounded open set U with

⋃
i∈I Si (U) ⊆ U with the union disjoint.

If each Si is assumed to be a similarity map with contraction ratio ci then the
Hausdorff and box dimensions of F coincide with the unique h ≥ 0 satisfying
Hutchinson’s formula ∑

i∈I

chi = 1.

Figure: The Sierpinski gasket has dimension log 3/log 2.
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Bedford–McMullen carpets

If the contractions are affine then the dimensions can differ.
Divide a square into an m × n grid, 2 ≤ m < n.
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Hausdorff and box dimensions

Figure: Three different Bedford–McMullen carpets. Picture by Jonathan Fraser.

Theorem (Bedford ’84, McMullen ’84)

dimH Λ =
1

logm
log

(
M∑
ı̂=1

N
log m
log n

ı̂

)
; dimB Λ =

logM

logm
+

log(N/M)

log n
.

Here, M := # non-empty columns, Ni := # maps in ith non-empty column,
N := N1 + · · ·+ NM .
Hausdorff and box dimensions differ iff the carpets have non-uniform vertical fibres
(which we always assume).
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Graph of the intermediate dimensions

Figure: Here, γ := log n/logm
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Formula for the intermediate dimensions
(B.–Kolossváry, ’21+)

Define the Legendre transform

I (t) := sup
λ∈R

{
λt − log

(
1

M

M∑
̂=1

Nλ̂

)}
.

For s ∈ R, define the function Ts :R→ R by

Ts(t) :=

(
s − logM

logm

)
log n + γI (t).

For ` ∈ N, write T `
s := Ts ◦ · · · ◦ Ts︸ ︷︷ ︸

` times

, and T 0
s is the identity. Define

t`(s) := T `−1
s

((
s − logM

logm

)
log n

)
.

For fixed θ ∈ (0, 1) let L = L(θ) ∈ N be such that γ−L < θ ≤ γ−(L−1). Then dimθ Λ
is the unique solution s = s(θ) ∈ (dimH Λ, dimB Λ) to the equation

γLθ logN − (γLθ − 1)tL(s) + γ(1− γL−1θ)(logM − I (tL(s)))− s log n = 0.
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Intermediate dimensions of Bedford–McMullen carpets

Phase transitions at negative
integer powers of log n/logm.

Real analytic and strictly concave
between phase transitions

Strictly increasing

Right derivative tends to ∞ as
θ → 0

Continuous for θ ∈ [0, 1] (proved
by Falconer–Fraser–Kempton (’20),
used by Burrell–Falconer–Fraser
(’21) to prove results on the box
dimension of orthogonal projections
of carpets)
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Different possible shapes of the graph
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Ingredients for the proof

Upper bound: construct an intricate cover using scales δ, δγ , δγ
2

, . . . , δγ
L−1

and δ1/θ, δ1/(γθ), . . . , δ1/(γL−1θ) (we need to use more than two scales when θ
is small).

The proof simplifies substantially when θ ≥ 1/γ (use just largest and smallest

scales) or θ = γ−k (use scales δ, δγ , . . . , δγ
k

).

A cylinder of length δ has height ≈ δγ . We break the carpet into
approximate square of size δ by stacking such cylinders. We cover depending
on how parts of the symbolic representation of the approximate square relate
to each other, using the method of types.

Lower bound uses a variant of a mass distribution principle proved by
Falconer, Fraser and Kempton (’20).
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Multifractal analysis

Let ν be the uniform Bernoulli measure supported on a Bedford–McMullen
carpet, satisfying

ν(A) =
N∑
i=1

1

N
ν(S−1

i A) for all Borel sets A ⊂ R2.

where N is the total number of contractions.

Kenyon and Peres (’96) showed that ν is exact dimensional: the local
dimension

dimloc(ν, x) = lim
r→0

log ν(B(x , r))

log r

exists and is constant at ν-almost every x ∈ Λ.

Jordan and Rams (’11) computed the multifractal spectrum of ν,

fν(α) := dimH{ x ∈ supp ν : dimloc(ν, x) = α },

building on work of King (’95).
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Multifractal analysis and bi-Lipschitz equivalence

Theorem (B.–Kolossváry, ’21+)

If Λ, Λ′ are Bedford–McMullen carpets with non-uniform vertical fibres, then the
intermediate dimensions are equal for all θ if and only if the corresponding uniform
Bernoulli measures have the same multifractal spectra.

If f : Λ→ Λ′ is bi-Lipschitz then dimθ Λ = dimθ Λ′ for all θ.

Corollary

If carpets Λ and Λ′ with non-uniform vertical fibres are bi-Lipschitz equivalent
then their uniform Bernoulli measures have the same multifractal spectra.

This improves a result of Rao, Yang and Zhang (’21+).
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Attainable forms of intermediate dimensions

The upper Dini derivative of a function h:R→ R at x is given by

D+h(x) = lim sup
ε→0+

h(x + ε)− h(x)

ε
.

Theorem (B.–Rutar, ’22)

Let h: [0, 1]→ [0, d ] be any function. Then there exists a non-empty bounded set
F ⊂ Rd with dimθ F = h(θ) if and only if h is non-decreasing, is continuous on
(0, 1], and satisfies

D+h(θ) ≤ h(θ)(d − h(θ))

dθ
for all θ ∈ (0, 1).

Proof idea: Necessity: ‘Break up’ the largest sets in the cover and ‘fatten’ the
smallest ones, to get a new cover corresponding to larger θ.
Sufficiency: construct an appropriate homogeneous Moran set M and prove that

dimθM = lim supδ→0(infφ∈[δ1/θ,δ]
log Nφ(M)
− log φ )
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Attainable forms of intermediate dimensions

Consequence: if f is any non-decreasing Lipschitz function on [0, 1], there exist
a > 0, b ∈ R and F ⊂ R such that dimθ F = af (θ) + b. In particular, the
following are possible:

Strictly increasing then constant then strictly increasing.

Strictly convex, strictly concave or linear.

Non-differentiable at each point in a dense subset of [0, 1].

Amlan Banaji (University of St Andrews) Intermediate dimensions October 21, 2022 19 / 21



Recovering the interpolation

If Flog := {0} ∪ { 1/(log n) : n ∈ N }, then dimθ Flog = 1 for all θ ∈ (0, 1], so there
is not full interpolation.

Theorem (B., ’20)

If F ⊂ Rd is non-empty and compact then for all s ∈ [dimH F , dimBF ] there exists
a function Φs : (0, 1)→ (0, 1) that is monotonic and satisfies Φs(δ) ≤ δ for all δ,
such that if we define

dim
Φs
F = inf{ s ≥ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all

δ ∈ (0, δ0) there exists a cover {U1,U2, . . .} of F such that

Φs(δ) ≤ |Ui |≤ δ for all i , and
∑
i

|Ui |s≤ ε }

then dim
Φs
F = s.

Proof idea: define

Φs(δ) := sup{ x ∈ [0, δ] : there exists a finite cover {Ui} of F

such that x ≤ |Ui |≤ δ for all i and
∑
i

|Ui |s≤ 1 }.
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Thank you for listening!

Questions welcome
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