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Fractals and dimension

Fractals typically have fine structure at arbitrarily small scales, and some sort
of self-similarity.

Different notions of dimension attempt to quantify the ‘thickness’ of sets at
small scales.

Figure: The Sierpinski gasket is a fractal which has dimension ≈ 1.58
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Hausdorff content

Throughout, F ⊂ Rn will be non-empty and bounded.

For s ≥ 0 and δ > 0, define the Hausdorff content

Hs
δ(F ) = inf

{ ∞∑
i=1

|Ui |s
∣∣∣∣∣F ⊆⋃

i

Ui , diam(Ui ) ≤ δ

}
.

Figure: A cover using balls of different sizes. Picture credit: Jonathan Fraser.
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Hausdorff dimension

As δ decreases, the infimum increases, so converges to a limit

Hs
δ(F )→ Hs(F ) ∈ [0,∞] as δ → 0+,

called the s-dimensional Hausdorff measure of F .

For each F there is a unique s ≥ 0, called the Hausdorff dimension of F , such
that if 0 ≤ t < s then H t(F ) =∞ and if t > s then H t(F ) = 0.

Figure: Graph of the s-dimensional Hausdorff measure of a set against s. Picture
credit: Kenneth Falconer.

Intuitively, disc has Hausdorff dimension 2 because it has positive and finite
area.
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Box dimension

The (upper) box dimension is defined by

dimBF := lim sup
δ→0+

logNδ(F )

− log δ
,

where Nδ(F ) is the smallest number of balls of radius δ needed to cover F .

Figure: A cover using balls of the same size. Picture credit: Jonathan Fraser.

Intuitively, a disc has box dimension 2 because the number of discs of size δ
needed to cover it scales approximately like δ−2 as δ → 0+.
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Assouad dimension

Assouad dimension is the largest reasonable notion of dimension. It captures
the scaling behaviour of the ‘thickest’ parts of the set.

dimA F := inf {α : there exists C > 0 such that for all x ∈ F and

0 < r < R, we have Nr (B(x ,R) ∩ F ) ≤ C (R/r)α } .

Figure: Covering a ball for the Assouad dimension. Picture credit: Jonathan Fraser.

It has applications to embeddability problems.

In general,
dimH F ≤ dimBF ≤ dimA F .
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Iterated function systems (IFSs)

An IFS is a finite set of contractions {Si :X → X}i∈I where X ⊂ Rn is
compact.
Hutchinson (1981) showed there is a unique non-empty attractor/limit set
satisfying

F =
⋃
i∈I

Si (F ).

Figure: The construction of the Sierpinski gasket. Picture credit: Kenneth Falconer.
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Self-similar sets

If each of the contractions Si is a similarity (so there exists ci ∈ (0, 1) such
that ||Si (x)− Si (y)||= ci ||x − y || for all x , y ∈ X ) then F is a self-similar set.

We assume the open set condition (OSC), which asserts that Int(X ) 6= ∅ and⋃
i∈I

Si (Int(X )) ⊆ Int(X )

with the union disjoint.

Then the Hausdorff, box and Assouad dimensions all equal the unique h ≥ 0
such that ∑

i∈I

chi = 1,

and the set is very homogeneous. For example, the dimension of the
Sierpiński gasket is log 3/log 2.
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Conformal maps

Conformal maps locally preserve angles.

If V ⊆ Rn is open then f :V → Rn is conformal if for all x ∈ V the
differential Df |x exists, is non-zero, is Hölder continuous in x , and is a
similarity map: ||Df |x(y)||= ||Df |x ||·||y || for all y ∈ Rn.

In one dimension, they are simply functions with non-vanishing Hölder
continuous derivative.
In two dimensions, they are holomorphic functions with non-vanishing
derivative on their domain.
In dimension three and higher, by Liouville (1850) they are Möbius
transformations.
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Infinite conformal iterated function systems
(Mauldin–Urbański, ’96)

10 1/21/31/4

First and second level cylinders for an infinitely generated self-similar set

An (infinite) conformal iterated function system (CIFS) is a countable number of
maps {Si :X → X}i∈I that satisfies the following properties:

Conformality: There exists an open, bounded, connected subset V ⊂ Rn such
that X ⊂ V and such that each Si extends to a conformal map from V to an
open subset of V . Moreover, there exists ρ ∈ (0, 1) such that ||S ′i ||∞< ρ for
all i ∈ I .

Open set condition

Cone condition: infx∈X infr∈(0,1) Ld(B(x , r) ∩ IntRdX )/rd > 0.

Bounded distortion property: There exists K > 0 such that for all x , y ∈ X
and any finite word w = (i1, . . . , ik) we have ||S ′w |y ||≤ K ||S ′w |x ||, where
Sw := Sii ◦ · · · ◦ Sik .
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Limit set

The limit set F of a CIFS can be defined as the largest set (by inclusion)
which satisfies

F =
⋃
i∈I

Si (F ).

It is non-empty but is not generally closed.

It is well known that if I is finite then the Hausdorff, box and Assouad
dimensions of F coincide.
If I is infinite then they can all differ, because the box and Assouad
dimensions can be influenced by the countable set of fixed points.
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Pressure function

For w ∈ I k define

Rw := sup
x,y∈X ,x 6=y

||Sw (x)− Sw (y)||
||x − y ||

,

the smallest possible Lipschitz constant for Sw . For v ,w ∈ I ∗ we have
Rvw ≤ RvRw , so the sequence

(
log
∑

w∈Ik R
t
w

)
k∈N is subadditive.

Therefore we can define the topological pressure function
P: (0,∞)→ [−∞,∞] by

P(t) := lim
k→∞

1

k
log
∑
w∈Ik

R t
w .
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Hausdorff and box dimensions

Henceforth, F will be the limit set of a CIFS.

Theorem (Mauldin–Urbański, ’96)

dimH F = inf{ t > 0 : P(t) < 0 }

In particular, if each Si is a similarity with contraction ratio ci then
dimH F = inf{ t ≥ 0 :

∑
i∈I c

t
i ≤ 1 }.

There may not exist t ≥ 0 such that P(t) = 0.

Here and later, P denotes the set of fixed points of the contractions:

Theorem (Mauldin–Urbański, ’99)

dimBF = max{dimH F , dimBP}
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Assouad dimension

Theorem (B.–Fraser, ’22+)

Assuming Si (V ) ∩ Sj(V ) = ∅ for all distinct i , j ∈ I ,

dimA F = max{dimH F , dimA P}.

Question: does one really need to assume the additional separation condition?
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Dimension interpolation

Take two notions of dimension dim and Dim for which dimF ≤ DimF for all
‘reasonable’ sets F . Try to find a geometrically natural family of dimensions
that always lies between them.

Intermediate dimensions (Falconer–Fraser–Kempton, ’20): for θ ∈ (0, 1),

dimH F ≤ dimθF ≤ dimBF .

Assouad spectrum (Fraser–Yu, ’18): for θ ∈ (0, 1),

dimBF ≤ dimθ
A F ≤ dimA F .
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Intermediate dimensions

Hausdorff dimension:

dimHF = inf{ s ≥ 0 : for all ε > 0 there exists a finite or countable cover

{U1,U2, . . .} of F such that
∑
i

|Ui |s≤ ε }

Box dimension:

dimBF = inf{ s ≥ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all

δ ∈ (0, δ0) there exists a cover {U1,U2, . . .} of F such

that |Ui |= δ for all i , and
∑
i

|Ui |s≤ ε }.

Upper θ-intermediate dimension for θ ∈ (0, 1):

dimθF = inf{ s ≥ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all

δ ∈ (0, δ0) there exists a cover {U1,U2, . . .} of F such

that δ1/θ ≤ |Ui |≤ δ for all i , and
∑
i

|Ui |s≤ ε }.
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Intermediate dimensions

Theorem (B.–Fraser, ’21+)

dimθF = max{dimH F , dimθP}.

Figure: Intermediate dimensions when P = { k−2 : k ∈ N }

Lower bounds are trivial. Upper bound for box and intermediate dimensions
uses an induction argument.

Using work of Burrell (’21+) we use the continuity of the intermediate
dimensions to prove applications to box dimensions of orthogonal projections
and fractional Brownian images.
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Assouad spectrum

Gives information about the thickest parts of the set with restriction on the
relative scales according to θ.

Assouad spectrum:

dimθ
A F := inf {α : there exists C > 0 such that for all x ∈ F and

0 < R < 1, r = R1/θ, we have Nr (B(x ,R) ∩ F ) ≤ C (R/r)α
}
.

Upper Assouad spectrum:

dim
θ

AF := inf {α : there exists C > 0 such that for all x ∈ F and

0 < R < 1, r ≤ R1/θ, we have Nr (B(x ,R) ∩ F ) ≤ C (R/r)α
}
.
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Assouad spectrum

In general the Assouad spectrum of sets is not monotonic, but...

Lemma
If F is the limit set of a CIFS then the function θ 7→ dimA F is increasing in θ. In

particular, dimθ
A F = dim

θ

AF .

Theorem (B.–Fraser, ’22+)

max{dimH F , dim
θ

AP} ≤ dimθ
A F ≤ max

φ∈[θ,1]
f (θ, φ),

where for θ ∈ (0, 1) and φ ∈ (0, 1],

f (θ, φ) :=
(φ−1 − 1)dim

φ

AP + (θ−1 − φ−1)dimBF

θ−1 − 1
.

In particular, f (θ, θ) = dim
θ

AP and f (θ, 1) = dimBF .
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Assouad spectrum - example

If P = {k−p : k ∈ N} then Fraser and Yu (’18) proved that

dimθ
A P = min

{
1

(1 + p)(1− θ)
, 1

}

p
1+p

1

1

0 θ

dimθA P

Figure: Case p = 5.7
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Assoaud spectrum - example

If p = 5.7 and the first finitely many contraction ratios are chosen so that
h = 0.45 then the upper bound is

dimθ
A F ≤ f

(
θ,

p

1 + p

)
=

{
h + θ

p(1−θ) (1− h), for 0 ≤ θ < p
1+p

1, for p
1+p ≤ θ ≤ 1

p
1+p

1

h

1

0 θ

dimθA F

upper bound

lower bound

Figure: Bounds when p = 5.7
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Assouad spectrum - example

Choosing the contraction ratios ck = k−t for fixed t ∈ [p + 1, p + h−1] and all
large k shows that the bounds are sharp:

p
1+p

1

h

1

0 θ

dimθA F

upper bound: t = p+ 1

lower bound: t ≥ p+ h−1

Figure: Graph of the Assouad spectrum for different values of t

These are the first dynamically generated fractals with Assouad spectrum having
two phase transitions (elliptical polynomial spirals also do – see
Burrell–Falconer–Fraser, ’21+).

Amlan Banaji (University of St Andrews) Dimensions of infinitely generated self-conformal sets May 30, 2022 22 / 25

https://amlan-banaji.github.io/


Lipschitz and Hölder maps

If g :X → Y is bi-Lipschitz and dim is any of the dimensions mentioned
today, then dimX = dimY .

The only one of these dimensions that can detect that different t give sets
which are not bi-Lipschitz equivalent is the Assouad spectrum.

If g :X → Y is α-Hölder then dim θg(X ) ≤ α−1dim θX , so the intermediate
dimensions give upper bounds for α:
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Continued fractions

For I ⊆ N define

FI :=

 z ∈ (0, 1)\Q : z =
1

b1 + 1
b2+ 1

...

, bn ∈ I for all n ∈ N

 .

Then {Sb(x) := 1/(b + x) : b ∈ I } is a CIFS (if 1 /∈ I ) with limit set FI .

If the symmetric difference of I and { bnpc : n ∈ N } is finite then the Assouad
spectrum of FI has the same form as the previous example with t = 2p.
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Thank you for listening!

Questions welcome
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